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Abstract. We give a simple proof of a necessary and sufficient con-
dition under which any congruent copy of a given ellipsoid contains an
integral point and study a similar problem for a 3-dimensional paral-
lelepiped.

1. Introduction

Motivated by questions originating in simultaneous Diophantine approxi-
mation problems, in 1967 I. Niven and H.S. Zuckerman studied lattice point
coverings by plane figures [NZ67]. Given a plane convex set S they were
interested in necessary and sufficient conditions such that S contains in any
position, i.e., with respect to arbitrary translations and rotations, a lattice
point of the integral lattice Z2. Their first theorem deals with ellipses and
they proved that an ellipse with semi-axes a and b contains a lattice point
in any position if and only if 4 a2 b2 ≥ a2 + b2.

Here we give a simple proof of a generalisation of their criterion to all
dimensions.

Theorem 1.1. Let E ⊂ Rn be an ellipsoid with semi-axes αi, 1 ≤ i ≤ n.
The following statements are equivalent:

i) E contains a lattice point of Zn in any position,
ii)
∑n

i=1
1

α2
i
≤ 4,

iii) E contains a cube of edge length 1.

To put the statement in a more algebraic form let an ellipsoid E ⊂ Rn be
given by all points satisfying the inequality

(1.1) (x− c)ᵀA(x− c) ≤ 1,

where A ∈ Rn×n is a positive definite symmetric matrix and c ∈ Rn. Let
tr(·) denotes the trace of a matrix. Then we have tr(A) =

∑n
i=1 1/α2

i and
Theorem 1.1 ii) says that (1.1) has an integral solution for any choice of c
and for any rotation of the coordinate system if and only if tr(A) ≤ 4.

We remark that the equivalence of the statements i) and ii) in the theorem
above follows already from a more general result of Banaszczyk [Ban90b] in
the context of connected subgroups of nuclear spaces and balancing vector
problems (c.f. [Ban90a], [Ban93], [BS97], [Gia97]). Here, however, we are
only interested in the integral lattice Zn, and in this case a more simple and
geometric proof of the equivalence is available.
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Despite ellipses Niven and Zuckermann also studied triangles, rectangles
and parallelograms (cf. [NZ67], [NZ69], [Mai69]). Depending on the length of
the sides or the distance between opposite sides they derived necessary and
sufficient conditions. It seems to be rather hard to generalise these results
to arbitrary dimensions in full strength, i.e., e.g., for a rectangular box one
would like to have tight necessary and sufficient conditions depending on the
length of its sides (cf. [BS97]). Indeed, even in the case of a cube we do not
know the minimum edge length such that a cube contains a lattice point in
any position. It is easy to see that in terms of the inradius a parallelogram
has the lattice point property if its inradius is not less than 1/

√
2. In fact,

this bound is also best possible as the diamond centred at (1/2, 1/2)ᵀ, i.e.,

(1.2) (1/2, 1/2)ᵀ + {x ∈ R2 : |x1|+ |x2| ≤ 1}

shows. In the 3-dimensional case we have the following result.

Theorem 1.2. A 3-dimensional parallelepiped P ⊂ R3 contains a lattice
point of Zn in any position if its inradius is not less than 1/

√
2, and this

bound is tight.

In particular, the theorem and the example (1.2) above imply that the
minimum edge length of a 3-dimensional cube containing a lattice point in
any position is

√
2.

2. Proofs

First we need some elementary definitions and facts from geometry of
numbers for which we refer to [GL87]. A lattice Λ is the set of all integral
combinations of n linearly independent vectors bi ∈ Rn, 1 ≤ i ≤ n, or
equivalently a lattice is a set of the form Λ = BZn, where B ∈ Rn×n is
a regular matrix. Let Bn be the n-dimensional unit ball centred at the
origin, and let the Euclidean norm be denoted by ‖ · ‖. The inhomogenous
minimum µ(Λ) of a lattice measures the maximum (Euclidean) distance
between a point x ∈ Rn and the lattice, i.e.,

µ(Λ) = sup
x∈Rn

inf
b∈Λ

‖x− b‖.

By definition we have that for any c ∈ Rn the set c + µ(Λ)Bn contains a
lattice point of Λ. The next lemma gives an upper bound on µ(Λ) in terms
of the length of linearly independent vectors contained in Λ. It is somehow
folklore (cf. [GLS93, pp. 149]), but for sake of completeness we include its
short proof.

Lemma 2.1. Let Λ ⊂ Rn be a lattice and let a1, . . . , an ∈ Λ be linearly
independent. Then

µ(Λ) ≤ 1
2
(
‖a1‖2 + · · ·+ ‖an‖2

) 1
2 .
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Proof. We proceed by induction on the dimension. For n = 1 the statement
is certainly true. Hence let n ≥ 2 and let x ∈ Rn with x =

∑n
i=1 λi ai for

some λi ∈ R. Next we find a lattice point in Λ which is “close” to x. To
this end let L be the linear space generated by a1, . . . , an−1 and let x be
the orthogonal projection of x onto the affine plane [λn]an + L, where [λ]
denotes a nearest integer of a real λ. Then we have

(2.1) ‖x− x‖ ≤ |λn − [λn]| ‖an‖ ≤
1
2
‖an‖.

x−[λn]an belongs to L and it is easy to see that Λ∩L is (or may be identified
with) an (n−1)-dimensional lattice. Thus, by our inductive argument, there
exists a lattice point b̃ ∈ Λ ∩ L such that

‖x− [λn]an − b̃‖2 ≤ 1
4
(
‖a1‖2 + · · ·+ ‖an−1‖2

)
.

With b = [λn]an + b̃ ∈ Λ and (2.1) we find

‖x− b‖2 = ‖x− x‖2 + ‖x− b‖2 ≤ 1
4
(
‖a1‖2 + · · ·+ ‖an‖2

)
,

which gives the desired inequality. �

Noe we come to the proof of the first theorem.

Proof of Theorem 1.1. First we show the equivalence of i) and ii). To see
that ii) is necessary let ρ <

√
n/2 and let E be the ball of radius ρ centred at

the (1/2, . . . , 1/2)ᵀ. Then we have αi = ρ,
∑n

i=1 1/α2
i < 4 and E ∩ Zn = ∅.

Now let E ⊂ Rn be an ellipsoid satisfying ii) and let D = diag(α1, . . . , αn)
be the diagonal matrix with entries αi. Let V = (vij) ∈ Rn×n be a suitable
orthonormal matrix such that E = c + V DBn, where c denotes the centre
of E . Obviously,

E ∩ Zn 6= ∅ ⇔
(
(V D)−1c + Bn

)
∩ (V D)−1Zn 6= ∅,

and in order to verify the right hand side we have to show

(2.2) µ(Λ) ≤ 1,

where Λ = (V D)−1Zn = diag(1/α1, . . . , 1/αn)V ᵀZn. Let ai ∈ Λ, 1 ≤ i ≤ n,
be the column vectors of the matrix (V D)−1 then we get

n∑
i=1

‖ai‖2 =
n∑

i=1

n∑
j=1

1
α2

j

v2
ij =

n∑
j=1

n∑
i=1

1
α2

j

v2
ij =

n∑
j=1

1
α2

j

.

Together with Lemma 2.1 and ii) we obtain

µ(Λ) ≤ 1
2
(‖a1‖2 + · · ·+ ‖an‖2)

1
2 =

1
2

 n∑
j=1

1
α2

j

 1
2

≤ 1.

Thus (2.2) is verified and so the equivalence i) ⇔ ii).
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In order to show that ii) is equivalent to iii) we may assume that

E =

{
x ∈ Rn :

n∑
i=1

x2
i

(αi)2
≤ 1

}
.

If ii) holds then E contains certainly the cube C = [−1/2, 1/2]n of edge
length one with vertices (±1/2, . . . ,±1/2)ᵀ. So it remains to show that iii)
implies ii) and to this end let C be a cube of edge length 1 contained in E .
With a suitable orthonormal matrix V = (vij) ∈ Rn×n and a vector t ∈ Rn

we may write C = t + V C. By the symmetry of C and E we have V C ⊂ E
and hence

n∑
i=1

1
(αi)2

 n∑
j=1

vij εj
1
2

2

≤ 1,

for all sign vectors ε ∈ {−1, 1}n. Summing up over all vertices leads to

2n ≥ 1
4

n∑
i=1

1
α2

i

∑
ε∈{−1,1}n

 n∑
j=1

vij εj

2

=
1
4

n∑
i=1

1
α2

i

∑
ε∈{−1,1}n

n∑
j=1

(vij εj)2 =
1
4

2n

(
n∑

i=1

1
α2

i

)
.

Hence we get ii). �

Next we give the proof of Theorem 1.2.

Proof of Theorem 1.2. The bound is certainly tight as already the 2-dimensional
example (1.2) shows. So let ui ∈ R3, ‖ui‖ = 1, νi ∈ R, 1 ≤ i ≤ 3, and

P = {x ∈ R3 : |uᵀ
i x| ≤ νi, 1 ≤ i ≤ 3}

be a parallelepiped with centre 0 and inradius at least 1/
√

2, i.e., νi ≥ 1/
√

2,
1 ≤ i ≤ 3. For c ∈ R3 we have to show that (c+P )∩Z3 6= ∅. To this end let
zc ∈ Z3 be a best approximation of c with respect to the maximum norm,
i.e., for p := zc − c we have |pi| ≤ 1/2, 1 ≤ i ≤ 3. Moreover let εi ∈ {−1, 1}
be the signs of the coordinates pi and we set

a0 := p, ai := p− εi ei, 1 ≤ i ≤ 3,

where ei denotes the i-th unit vector. Obviously, in order to verify (c+P )∩
Z3 6= ∅ it suffices to prove that

(2.3) P ∩ {a0, a1, a2, a3} 6= ∅.
Suppose the contrary. Then for each ai exists an uji such that ai violates
uji , i.e., |uᵀ

ji
ai| > 1/

√
2. Hence w.l.o.g. we may assume that u1 is violated

by two points aj and ak with j < k. Now we distinguish two cases.
First we assume that aj and ak differ in exactly one coordinate, i.e., we have
j = 0 and w.l.o.g. let uᵀ

1 a0 > 1/
√

2 and let k = 1. Since ‖a0−a1‖ = 1 ≤
√

2
we also must have uᵀ

1 a1 > 1/
√

2. Since the first coordinate of a0 and a1
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have different signs and since the remaining coordinates coincide we can find
a λ ∈ [0, 1] such that a := λ a0 + (1− λ)a1 = (0, p2, p3)ᵀ. Hence, on account
of |pi| ≤ 1/2 we get the contradiction

1/
√

2 ≥ ‖a‖ ≥ |uᵀ
1 a| = λ uᵀ

1 a0 + (1− λ) uᵀ
1 a1 > 1/

√
2.

Thus we are left with the case that pj and pk differ in two coordinates.
W.l.o.g. let j = 1, k = 2 and uᵀ

1 a1 > 1/
√

2. Since ‖a1 − a2‖ =
√

2 we also
have uᵀ

1 a2 > 1/
√

2. Let

λ :=
1 + ε1 p1 − ε2 p2

2

and

a := λ a1 + (1− λ) a2 =
(

p1 + ε1ε2 p2 − ε1
2

,
p2 + ε1ε2 p1 − ε2

2
, p3

)ᵀ

,

and for abbreviation we set β = ε1 p1 + ε2 p2. Then we may write a =
(ε1 (β − 1)/2, ε2(β − 1)/2, p3)ᵀ. Since λ ∈ [0, 1] we have uᵀ

1a > 1/
√

2 and so

1
2

< ‖a‖2 = 2
(

β − 1
2

)2

+ (p3)2.

With |p3| ≤ 1/2 we obtain the quadratic inequality

β2 − 2 β + 1/2 > 0

with roots 1± 1/
√

2. Since 0 ≤ β ≤ 1 we get β < 1− 1/
√

2 and thus

‖a0‖2 = (p1)2 + (p2)2 + (p3)2 ≤ β2 + (p3)2 <

(
1− 1√

2

)2

+
1
4

<
1
2
.

The inradius of the parallelepiped P , however, is at least 1/
√

2 and thus the
last inequality shows a0 ∈ P which contradicts our assumption. �

3. Remarks

Finally we would like to pose the following problem mentioned already
in the introduction: For the n-dimensional unit cube Cn determine the
minimum number γn such that γn Cn contains a lattice point (of the integral
lattice Zn) in any position.

By Theorem 1.2 we have γ2 = γ3 =
√

2. To the best of our knowledge
no further exact values of γn are known. A much more general result of
Banaszczyk and Szarek [BS97] implies in particular that γn = O(

√
log n) as

n tends to infinity. Moreover, if the so called Komlós conjecture were true
then as an immediate consequence we would know that γn is bounded by
an universal constant (cf. [BS97], [Gia97]).
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